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Abstract

We present a general method for modeling safety aspects of railway control systems. Using
our modeling method, one can progressively refine an abstract railway safety model, successively
adding layers of detail about how a real system actually operates, while maintaining a safety
property that refines the original abstract safety property. This method supports a top-down
approach to specification of railway control systems and to proof of a variety of safety-related
properties.

We demonstrate our method by proving safety of the classical block control system.
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1 Introduction

This paper presents a mathematical model of what it is that makes a railway control system safe.
By safe, we mean that trains never collide and never attempt to cross switches that are adversely
set. By system, we mean that our method models how trains, switches, signals, controllers, and
other devices work together to ensure safety. In this paper, we do not address the details of how
individual devices work, though such things could be added in further refinements of our model.
One could say that in this paper we are concerned with proving the correctness of safety protocols,
rather than proving correct behavior of devices.

In this paper, we demonstrate our method by developing a three layered model of the classical
block control system [10, 1, 2] and proving that it is safe. This model assumes that signals work as
prescribed and the system is supported by some sort of emergency braking mechanism that ensures
that a train that passes a red signal will come to a stop before it traverses another block. The three
layers of the model are the following.

* A basic model defines basic concepts related to track and switching, as well as the concepts
of safe state and safe operation (safe state transition) of a rail system. (Section 3.)

e An intermediate model that adds the concept of controlling the direction that trains may
move on a bidirectional track sector. (There must be a switch between any two trains moving
in opposite directions.) (Section 4.)

e A full-blown block control model. (Section 5.)

Each level is a state machine-based safety model, as described in Section 2. The model at each
level refines its predecessor in a sense defined in Section 2. That is, each level adds detail in a way
that preserves the way its predecessor operates and has a safety property that is at least as strong.

Our method can be adapted to support proof of a variety of properties implying safety as defined
above. In the block system, the fundamental safety property is roughly that no two trains ever
occupy the same block. This property is enforced by the fail-safe equipment that ensures that
unless a train has a vacant block ahead of it, will be undergoing emergency braking and will come
to a stop before entering the next block.

Emergency braking is, however, undesirable. It will occur only if a train passes a red signal. A
second important safety property, therefore, is the property of normal operation: if the signals are
obeyed, then emergency braking will not occur.

Most of our discussion of the block system is devoted to the fundamental safety property, but in
Section 5.11 we discuss how to adapt our safety proof to show that if trains observe yellow signals
by braking to a stop within the following block, then emergency braking will never occur.

The work most closely related to ours is that of Hansen [3] and of King [4]. Each builds a track model
with some similarities to ours and discusses switches and signals, but is interested in simulation
rather than proving theorems about safety. Our switch model is novel and is different from Hansen’s.
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King’s paper is rather short and sketchy, and he seems to intend only a specification of signaling
and not a safety proof. We are not aware of any other work that supports proofs of safety of the
kind that we give. Simpson [9] presents a CSP specification of the communications necessary to
support train control by wayside controllers rather than signals. If we were to refine our model
further in order to define a protocol governing how sector direction is controlled, we would probably
use a communication model like Simpson’s.

The best-known project applying formal methods to train control, for SACEM |7, 6], appears to have
concentrated on verifying the software and hardware used to implement the control system rather
than on proving safety of the overall control scheme. The work in this paper is complementary. We
take proper operation of devices as given and concentrate on the system aspects of safety, that is,
on how the parts work together to reach the global goal of safety.

Our model, or, more properly, family of models, is based on the concept of a state machine that
is commonly used in systems modeling. In the model, a rail system has at any moment a state
consisting of (discretized) position of trains, settings of switches, aspects of signals, and possibly
other things. The state of the rail system may from time to time change according to one of a set
of permitted state transitions. Some of states are classified as hazardous. Those must be avoided.
A way to do that is to find a set of safe states, disjoint from the set of hazardous states, that is
invariant under state transitions (a state transition from a safe state always leads to a safe state).
Then whenever the system is started in a safe state, it will always remain in a safe state.

Our basic safety concept is that in any state of the rail system, each train has an associated safe
area such that at any time, even in an emergency situation:

o the safe area of each train contains the track occupied by that train;

o the safe area of each train never includes switches set so that the train cannot safely cross
them; and

e the safe areas of distinct trains do not overlap.

Implicitly, our models all assume that each train can always brake to a stop before leaving its safe
area. We do not model the fail-safe devices, trip-stops, braking profiles, etc., that may actually be
used to enforce this requirement. In fact, notions of distance, time, and speed are not represented
in our model, so we cannot describe how such devices would work without adding further levels that
introduce these notions. Our model describes how the control scheme works, not how individual
trains and switches are controlled.

At the heart of our model is a generic, abstract notion of safety that can be instantiated in order
to prove safety of many specific control schemes. It is useful to separately state the top-level safety
model because it identifies a set of concepts and properties that are implicitly used to ensure safety
in a wide variety of control systems. Thus, when a new control system is designed or existing
systems combined, the designers can check safety by showing that the essential concepts of our
model can be defined in their system in such a way that the properties required by our model are



satisfied. We believe that our method can also provide a basis for algorithms that will automatically
check safety in specialized, well-defined contexts, such as design of signaling protocols.

The significance of our work is not so much that we can prove safety of a classical block control
system; it is that we have an approach to railway safety modeling that can be used in establishing
the correctness of other control methods.

We have formalized most of the concepts discussed in this paper in the specification language of
the PVS theorem prover [8] and have proved numerous lemmas about those concepts, but we have
not yet formalized or proved in PVS the safety theorem for block control, Theorem 5.9. Many of
the proofs are not deep but require some attention to detail. Such proofs are good candidates for
formal checking, but finishing the task of carrying this out will have to wait for another opportunity.
Our purpose of formalizing as much as we did was to help choose the clearest of several possible
formulations of some of the concepts needed to define the rules of block control, and to check those
formulations by proving various lemmas about them.

2 State Machines, Safety Models, and Refinement

A state machine is a pair (I,F) where I is a set, the set of states, and F is a binary relation on T,
the transition relation, written infix, S+ §’. If § F S, we refer to (5, ") as a state transition. For
all our state machines, “no change” will be a valid state transition; that is, forall S€ £, S F S.

A safety model is a triple (¥,F,S) where (Z,F) is a state machine and S C T is the set of safe
states. We say that (X,F,S) is safe if S is invariant under state transitions: for all § € S and
S’ € ¥ such that S+ 5/, 5" € S.

A refinement of a safety model (Z;,+1,51) consists of another safety model (I3, F3,S,) together
with a mapping p: £, — ¥; such that

e p[S2] C &1 and
e for all transitions S k3 §" with § € Sy, p(S) k1 p(S").

The idea of a refinement is that M; = (1,F,S;) represents a more abstract model of a safe system,
M; = (23,F3,8;), a more detailed one. The existence of a refinement mapping p guarantees that
the safety notion S; really embodies the simpler idea Sy, in spite of the greater detail in the model
M. A natural way to develop a safety model is to start with a simple, very abstract model in
which the notion of safety is particularly clear, then proceed through successive refinements until
a sufficiently realistic one is obtained.

One other point: since unsafe states are not really of interest in proving that one model refines
another, why include unsafe states in the model at all? The most important reason is to make
models adaptable to different notions of safety. For example, in this paper, we use two variants of
the same basic model to prove two different safety properties of the block control system.



Our definition of a safety model is not the most general one. More generally, one is given a set of
hazardous states H (or the complement of such a set) whose complement need not be invariant. In
order to run the system safely, one must find an invariant set of states Z disjoint from H. If one
starts the system in Z, it will never enter a hazardous state. The invariant Z corresponds to what
we call the safe states of a safe model. This definition is a bit more general because one may be
able to choose among several invariant sets for a given set of nonhazardous states. Furthermore,
the set of hazardous states will normally be easier to define than an invariant set of safe states.

We will stick to our more specific definition of a safety model because the main focus of this paper
is the refinement of safe models. It will, however, be useful to define the hazardous states in our
most basic model in order to show that our notion of safety is a useful one. The definition of a
hazardous state is the same in all our models.

3 The Basic Railway Safety Model

This section defines a basic mathematical model of track, trains, their states, how their states may
change, and what it is for them to be in a safe state. The last three items form a safety model,
which defines the basic notion of railway safety. The track model and train model together form
what we call a rail system.

We emphasize that this is an abstract model that defines the structures essential to our style railway
safety model. It can be adapted to model safety in a wide variety of railway control systems, but
it does not in itself model any realistic railway control system. Rather, it is a way of stating the
essential requirements that a railway control system must satisfy in order to be safe.

The essential concepts elaborated in this model are: a graph-theoretic model track, switches and
their states, position of trains, the safe area of a train (where it can safely go), what safety is, and
permissible transitions of train and track states.

The model is abstract because it contains few details of rail system operation beyond those necessary
to mathematically represent the concepts just mentioned. How a railway control system maintains
safety must be defined for a particular control system.

3.1 Summary of the Basic Model

The entire basic model constitutes a ra:l system. It consists of a railnet and a set of trains. The
railnet and each train has a state, which together form the state of the rail system.

The railnet is a graph-theoretic model of the track in the rail system. It consists of a set of track
units, complexes of pieces of track, called edges, that can only be traversed in certain combinations.
A state of the railnet, or netstate, consists of a selection from each track units of a set of edges that
can be safely traversed at the same time.

Trains are simply abstract objects with an associated state. A state of a train consists of its
position, essentially the set of edges it occupies and its direction; and its safe area, the collection



of edges that a train may at present safely occupy.

A system state is hazardous if two trains have overlapping positions or the position of some train
is not contained in the netstate (derailment).

A system state is safe if the following conditions hold.

e The position of each train is contained in its safe area.
e The safe area of each train is contained in the netstate.

e Safe areas of trains are disjoint.

The safe states form an invariant set of nonhazardous states. Hazardous states will be defined in
the same way in all our models, but the notion of a safe state will be progressively refined as more
control structure is added to the models.

3.2 Concepts from Graph Theory

Our railway models are based on graph theory, the abstract mathematical theory of points, called
nodes or vertices, and connections between them, called edges. The general idea is that edges
represent sections of track and vertices are places where those sections of track meet. We will
describe the application of this idea in more detail below. In this section, we will describe the basic
graph-theoretic concepts in the abstract.

Unlike Hansen (3], we use undirected graphs, rather than directed graphs to represent track. Prop-
erly speaking, our graphs are multigraphs, because we permit more than one edge to join a given
pair of vertices. We do want to specify whether the track may be traversed in only one direction or
in both, but we prefer to do that with a separate function on edges giving their directionality. The
reason for this preference is to stress the correspondence between edges of the graph and physical
pieces of track: even though an edge joining vertices u and v may be traversed either u — v
or v — u, we want to stress that there is only one edge joining u and v. Directionality is also
irrelevant to our model of interlocking switches as complexes, so it is preferable for directionality
to be a separate concept rather than inherent in the notion of an edge.

For us, a graph is a quadruple (V, E,I, D). V is the set of vertices, E the set of edges. For e € E,
I(e) is a two-element subset of V. Its elements are said to be incident to e, and vice versa. For
e € E, D(e) is either {(u,v)}, {(v,u)} or {(u,v),(v,u)}, where I(e) = {u,v}. We say that e is
bidirectional if D(e) has two elements. If e is unidirectional, then traffic may never traverse it
except in the one permitted direction. If (u,v) € D(e) then we call u an entry node and v an ezit
node of e. Two edges are adjacent if they have a common incident vertex.

In our model, V represents a collection of points on a rail network. The edges represent non-
overlapping sections of track connecting elements of V. If I{e) = {u,v} then e connects u and v.
The set D(e) represents the directions in which e may be traversed. If (u,v) € D(e), then e may be
traversed going from u to v, etc. Zero, one, or more than one edge may connect a pair of vertices.



A directed edge is a pair d = (e,(u,v)) where (u,v) € D(e). The reversal of a directed edge

(e, (u,v)) is

reverse(e, (u,v)) = (e, (v, ),
which is a directed edge if and only if e is bidirectional.
Here are the basic graph-theoretic concepts we need.

e A (directed) path in a graph is a sequence of directed edges

(€0, (v0,v1)), (€1, (v1,v2)); - - -, (€ny (Vny Vns1))

(3.1)

such that each successive edge starts from the vertex where the previous one ends.

We will always assume that a path has at least two vertices and one edge, that is, n > 0.

The path (3.1) is simple if the vertices vp,...,vn+1, and hence the edges eg,...,e,, are
distinct. The path (3.1) is locally simple iffor i =1,...,n— 1, e;—1 # €j41.

d d d
Uo -—L U -1—2’- U2 - U3 — Uq ——sb- Us
] } L

d
5 Ug
Il

] ] 1
L 1 ¥ I 1 L

We will also consider paths ...,d_y,dp,dq, ... that are potentially infinite in each direction.

e A sequence like (3.1) is a pseudopath (undirected path) if for each ¢, e; is an edge with distinct
incident vertices v; and v;+1, but is not necessarily traversable in the direction v; — v;4;.

We say that e is a common edge of the path in (3.1) and the path

[ ]
(€0, (v0, v1)), (€15 (v1,3))s - - -5 (€ns (U s Vms1))
iffor some ¢ and j,0<:<n,0<j<m,and ¢; = eg- = e. Similarly for pseudopaths.
e A pathdy,...,dn, is asubpath ofa path dy,...,d ifdo,...,dn, is a subsequence of dy, . .., d.,.
Ug do U1 d U2 d2 u3 ds Ug ds Us ds Us
1 i i ] 1 ] ]
1 1 T 1 T 4 T
uf u! ul u’
0 d6 1 d’l 2 d'2 3
e We say that a path dj,...,d] advances a path do,...,d,, if there is a final subsequence of
do, . ..,dr that is an initial subsequence of dy, ..., d;,
w % 4 & up B oy Gy
1 | 1 1 1 | - |
! T 1 1 1 i T
up g W g Uy g uy g U d U



 The reversal of a path do, . .., dn is just the sequence reverse(d,,), .. ., reverse(dp), which is a
path if and only if each edge in the original path was bidirectional.

uo do U1 d uy 92 u3 d3 ug d4 us ds ug
] ] 1 1 1 1 ]
r I H ] ¥ i 1

! ! / ! / 14 !
U, / u / (7 ! U / U ’ u ! U

6 d 5 d, Ya d, ¥s 4y Y2 g, % d, Yo

e “Subpath” and “advances” both include the possibility that the two paths are the same.

3.3 Track Units

The aggregate of track in the rail system is modeled as a graph. The edges are sections of track
and the vertices are points dividing or terminating the edges. Just how the track is divided up
into edges is rather arbitrary. We assume only that edges are short enough that the control system
needs to know the position of a train only up to the edges it occupies.

Not all track edges can be safely traversed at any given time. Furthermore, only certain combina-
tions of edges can be safely traversed at the same time. To reflect this interdependency, we group
edges into track units. Track units are complexes of edges (and their associated vertices) whose
traversability depends on each other, but not the traversability of edges of other track units. We
will regard the track in a rail system not just as a collection of vertices and edges, but as a collection
of track units, called the railnet. In our model:

e The vertices are exactly the points where track units (defined below) meet or end.

o The edges are simple lines of track within a track unit, going from one vertex to another

without passing through any intervening vertex.

In graph-theoretic terms, a track unit is a pair T = (N1, St) where

e N is a set of vertices, a subset of the set of all vertices.

o St is a set of sets of edges connecting the vertices (set of subsets of E all of whose members
connect pairs of members of Nr).

o Each set of edges S € St is called a state of the track unit.

e For each state § € St, each vertex p € N is incident to at most one edge e € §.

e If St contains more than one state, then § (the empty set of edges) is also a state in S.

o Two states Sy, .97 of a track unit are said to be mutually accessible if either S; = S, or one

of 51 or S, is the empty set.
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11 rl

11 rl
12

Simple Merge/split

11>< rl 11 rl 11 rl
12 r2 12 2 12 r2

Cross Single crossover Double crossover

Figure 1: Five kinds of track units.

e We say that an edge in one of the states of a track unit occurs in the track unit.

In a track unit (N7,S87), the members of St are sets of edges that can be safely, simultaneously
traversed.

The most common kinds, perhaps the only kinds, of track units that occur are those in Figure 1. A
track unit isomorphic to the one labeled simple is called a simple track unit. All others are called
complez track units or switches.

A complex track unit reflects the idea of an interlocking, that is, a complex of short pieces of
track and related switches that are opened and closed in a coordinated manner. Although the term
switch applies more properly to a node at which more than two edges meet, we will follow colloquial
practise and apply the term to a complex track unit.

The possible states of a switch reflect the combinations in which the interlocking logic permits its
edges to be traversed. The idea of the accessibility relation is that to change switch settings, it is
necessary first to open the switch, that is, change the state of the track unit to the empty set (no
safe traversals possible).

Note that our model of track units and their states relates only to the underlying undirected graph,
not to the directionality. An edge is either in or out of a state. It cannot be in with one direction
and out with the other.

To understand the track unit model, let us see how to use it to represent the track units in Figure 1.
Specifically, let us consider the most complex track unit in Figure 1, the double crossover switch.
We denote, say, the edge joining 11 and r1 by 11-r1. In the double crossover switch,

N ={11, 12, r1, r2}
S = {0, {11-r2},{12-r1}, {11-r1,12-r2}}

11



11 rl 11 rl
12 r2 12 r2

1. (open) 2.

11 rl 11 / rl
] E— 12 2

Figure 2: Possible settings of a double-crossover switch.

The members of N are the vertices where the switch joins other track units. The states of the
switch correspond respectively to the four possible settings of the switch, shown in Figure 2:

1. open (cannot be safely traversed);

2. can be safely (simultaneously) traversed along the lines 11-r1 and 12-r2.

3. can be safely traversed only along the line 11-r2;

4. can be safely traversed only along the line 12-r1;
Two states are mutually accessible if the corresponding switch setting can be changed directly from
one to the other. Thus, a non-open setting can be changed to another non-open setting only by

first opening the switch. An open switch can be changed to any non-open setting. In state machine
terms, each track unit T = (N7, S7) induces a state machine

(S1,F1)

where for £, E’ € S,
EFE < (E=E)W(E=0V(E =0

We conclude by giving the models for each of the five kinds of track unit given in Figure 1.

e Simple. N = {11,r1}, § = {{11-r1}}.

o Merge/split. N = {11,12,r1}, S = {0,{11-r1}, {12-r1}}.
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e Cross. N = {11,12,r1,r2}, § = {0,{11-r2}, {12-r1}}.
e Single crossover switch. N = {11,12,r1,r2}, § = {0, {11-r1,12-r2},{12-r1}}.

e Double crossover switch.

N ={11,12,r1,12},
S ={0,{11-r1,12-r2},{12-r1}, {11-r2}}.

We remark that the states of a switch reflect its logical behavior, not its physical behavior. For
example, a cross typically does not contain any switching mechanism. Rather, the control system
must be such that the two edges are never traversed at the same time. In the classical block control
system with signals, signals must forbid entry to at least one edge of the cross at any time.

Similarly, the author has been assured that it is physically possible to set a double crossover switch
so that it functions as a cross. Either the switch setting mechanism must never actually set it that
way, or else the control system must, as for the cross, permit trains to cross only one diagonal at a

time.

We could make a slightly fancier model of a simple track unit by letting it have two states: one
consisting of its single edge, and the other the empty state. The empty state would represent a
broken rail. No changes to the basic model would be required by this to support this more general
model of simple track, and only minor changes to the models we discuss later.

3.4 Model of a Railnet

The railnet is a collection 7 of track units. We will write T = (N7, S8t) for T € 7 a track unit,
where Nt is the set of vertices of T and St is the set of states of T. We also write E7 for the set
of edges occurring in T', Er = Uges, - Assigning a state (switch setting) to each track unit in
the railnet will produce a global state of the railnet, the collection of all edges that can be safely
traversed with those switch settings.

Different track unnits may share vertices. In fact, we assume that the vertices of a railnet are
partitioned into two kinds, terminal and nonterminal vertices.

e Terminal vertices belong to exactly one track unit.

e Nonterminal vertices belong to exactly two track units.
We further assume that:

e no two track units share an edge;
e each vertex of a switch is nonterminal; and

e no two switches share a vertex.

13



The first requirement reflects an essential property of a safe rail system. The last two requirements
are not essential, but any rail system can be modeled so that they are true, and they make things
simpler. The significance of the second requirement will become clear later in Section 5.

With the railnet 7 is associated a graph called the supernet, (N, E), given by

N=|JNr, E= | Er.
TeT TeT

That is, the set of vertices of the supernet consist of all vertices of any track unit in the railnet,
and the set of edges consists of all edges occurring in any track unit in the railnet.

A state of the railnet, or netstate, is a set of edges Spet C E such that for each track unit T,

The netstate represents the ensemble of all track edges that can be safely traversed a given time.

Netstates correspond to another natural notion of state of the railnet, namely an assignment of
a state S7 € St to each track unit 7. We call such an assignment a track state assignment.
Physically, it prescribes a particular setting for each switch in the rail net.

Each netstate Sne: induces a track state assignment given by
ST = Snet n ET, T € T. (33)
Conversely, each track state assignment Sz, T € 7, induces a netstate Sy, by

Snee = | St (3.4)
TeT

In each case, Spe is the set of track edges that can be safely traversed with the switch settings
indicated by the track assignment Sy, T € 7.

Because track units do not share edges, Snet as defined in eq. (3.4) satisfies the condition in eq. (3.2)
and is therefore a netstate. Furthermore, eqs. (3.3) and (3.4) define inverse operations. Thus,
netstates and track state assignments stand in one-to-one correspondence. They represent two
equivalent definitions of railnet state, by traversable edges and by switch settings.

The proper notion of transition for railnets is indicated by the correspondence with track assign-
ments. That is, a netstate transition from Snet to S), is possible if for each track unit 7 € 7, the
state ST of T induced by S, and the state St of T induced by S!., are mutually accessible.

Formally, the netstates and their transitions form a state machine

(Eneta l_1'1et) .
Znet is the set of all netstates Spe, and

Snet, '_net Slllet > VT e T, ST }_T S, y
T
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where S7, T € 7, and ST, T € 7, are respectively the track assignments induced from Spe¢ and
Sl via eq. (3.3).

Each netstate Spee induces a subgraph (N, Spet) of (N, E). We will often speak as if She¢ were this
subgraph. This subgraph is of degree two; therefore each of its components must be either a path
or a cycle.

Theorem 3.1 For any netstate Spey, any vertez is incident to at most two edges of Spet.

Proof. Each vertex is a node of at most two track units and any netstate contains at most one
edge incident to each node of each track unit. O

3.5 Trains, Positions, and Safe Areas

From the point of view of our model, a train is simply an abstract entity known by its state, which
at this level consists of its posttion and its safe area.

o the position of a train is a simple path in the supernet, representing the set of edges that the
physical position of the train overlaps. If this path is (eo, (vo,v1)),- .., (€n, (¥n,Un+1)), then
the train is considered to be moving in the direction vg to v, (even if the physical train would
be standing still). The vertex vn+1, is called the head or head verter of the train; e, is called
the head edge; vg is called the queue.

o the safe area r of a train 7 is a simple path in the supernet, representing an area of track that
7 currently has permission to occupy.

e the position must be a subpath of the safe area.

In this model, head and queue need not pinpoint the actual head and queue position of the physical
train. Rather, they are the vertices in front of the actual head and behind the actual queue position

of the train.

A transition from a train state s to a train state s’ is permitted in the following two cases.

e Normal progress. the s’-position advances the s-position, the s’-safe area advances the s-safe
area, and the s-position is a subpath of the s’-safe area.

Y Y S'-safe area

S-safe area X
]
S-queue S-head
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o Reversal. The §’-position reverses the S-path. The 5’-safe area can be any path that has the
S’-position as a subpath.

5’-head S'-queue
! 1
_____ ' . ;__ S’-safe area
S-safe area 3 A
' :
S-queue S-head

The idea of reversal is that a train comes to a stop, reverses its intended direction of travel, has a
new safe area designated, then proceeds in the new direction.

Putting all this together, train states and their transitions define a state machine

(ztrain, Ftra.in)

where

® Zirain is the set of pairs (position, safe-area) where safe-area is a path in the supernet and
position is a subpath of safe-area, and

o (position, safe-area) tirain (position’, safe-ared’) if either

— position’ advances position, safe-area’ advances safe-area, and position’ is a subpath of
safe-area, or

— position’ is the reversal of position.

3.6 The Rail System

A rail system consists of a railnet 7 and a set of trains Train. A rail system state is a pair
(Snet, Strain), Where:

® Shet € Znet is a netstate (state of the railnet);
® Sirain is a function Train — 3¢, assigning a state to each train.
A state (Snet, Strain) is safe if

e for each train 7 € Train, the safe area of Sirain(7) is a subpath of Shet; and

e for any two trains 7,7’ € Train, the safe areas in Strain(7) and Strain(7') have no common
edges.
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Let Ypasic be the set of rail system states and let Sy, be the set of safe states.
A system state is safe if the safe areas of trains are disjoint and subpaths of the netstate.

Because each train is in its safe area, the safe areas pass only through safe switches, and safe areas
are simple paths and do not intersect other safe areas, it follows that the trains cannot collide in a
safe state.

3.7 State Transitions

Our intention is that the state transitions in our model should be like the state transitions that
would occur in a physical rail system. That is, the state changes whenever the safe area of a train
changes, whenever the head or queue of a train crosses an edge boundary, whenever a train changes
direction, and whenever the state of a switch changes.

Let S = (Sqet, Strain) and S’ = (Spet, Strain) be states of the rail system. A state transition
S Fbasic S’ is permitted if the following conditions hold.

/
® Onet i-net Snet .

e For each train 7, the following conditions hold.

= Strain(7) Ftrain Strain(T)-
— Either safe_area’(7) is a path in SJ,, and shares no edges with safe areas of other trains,
or else safe_area’(7) = safe_area(r).

Now (Zbasics Fbasics Sbasic) defines a state machine induced by the rail system. Our definitions make
the following Theorem trivial.

Theorem 3.2 (Zy.cic, Fbasic; Sbasic) 15 safe.

It is possible to drop the restriction on train state transitions that the path can advance only one
edge. We impose it only in order to conform to the idea that a state change should occur whenever
the model’s representation of the state of the physical system would change, e.g., when ever the
physical head or queue of a train crosses a vertex.

4 Sectors and Direction Control

The basic mode] states that the safe areas of distinct trains may not overlap. But how is this
requirement to be enforced? One way is to separate it into two parts: trains moving in opposite
directions and trains moving in the same direction. In this section, we will address the first part by
dividing the netstate into sectors each of which may intersect only the safe areas trains traveling
in a particular direction.
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In the next section, we will present the signaling mechanisms that enforce this direction control as
well as the condition that safe areas of trains moving in the same direction do not intersect.

The key notion of this section is that of a sector. A sector is a stretch of track between switches.
The state of a sector is the direction in which it may currently be traversed. The safe area of a
train may share nodes only with sectors whose direction is compatible with the safe area. This
condition implies that safe areas of trains moving in opposite directions cannot overlap.

4.1 No-Cycle Condition and Flow Condition

We will assume that our track satisfies two natural conditions.

No-cycle condition. The supernet contains no simple cycles of edges of simple track
units.

From this condition and the finiteness of the set of edges, it follows that any pseudopath of simple
edges of simple track units that is locally simple (does not double back on itself) is finite.

Flow Condition at a Vertex. Any vertex v must be both an entry node of some
edge e; and an exit node of some edge e;. If v belongs to more than one track unit,
then it must be possible to choose such e; and e; belonging to different track units.

Figure 3 shows a number of examples in which the flow condition does or does not hold. The flow
condition permits track to cease being bidirectional only by splitting directions at a switch or by
ending altogether.

The flow condition implies that every locally simple pseudopath of edges of simple track units is a
path or the reversal of a path.

4.2 Sectors

A sector C is a maximal set of contiguous edges of simple track units. That is:
e C is nonempty;
e all members of C are edges of simple track units;

e any edge of a simple track that is adjacent to an edge of C belongs to C;

® any two edges in C are joined by a pseudopath of edges in C.

In other words C is an edge-component of the subgraph of the supernet whose edges are the edges
of simple track units.
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Figure 3: Flow through a vertex: permissible and forbidden configurations.

Because any vertex is incident to at most two edges of simple track units, each sector must consist
of the edges of a simple pseudopath

(eo, (v, v1)), (1, (v1,v2)), . -+, (€n, (Vn, Vns1)) (4.5)

By the no-cycle condition, vy and v,4; are distinct and not incident to any other edge of a simple
track unit. By the flow condition, the pseudopath (4.5) is a path or the reversal of a path (both,
if any of its edges is bidirectional). The nodes vp, ..., vn41 are the nodes of the sector C. Because
sectors are closed under adjacency, distinct sectors have disjoint node sets. Because terminal nodes
belong only to simple track units and switches are adjacent only to simple track units, every node
belongs to some sector, called the sector of that node. Likewise every edge of a simple track unit
is the edge of a unique sector.

We can regard a sector like sector C in (4.5) as a kind of big edge and apply the terminology of
edges to sectors. The incident nodes of C are vp and vn41. If the pseudopath in (4.5) is actually
a path then v is an entry node of C and v,y is an ezit node of C; if its reversal is a path, then
Un+1 1S an entry and vp is an exit.
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A direction of a sector is a pair of vertices (u,v) where u is an entry node and v is an exit node of
the sector. D(C) is the set of directions of a sector C.

4.3 The Basic Model with Direction Control—Objects and States

We add sectors to the basic model.

A state of a sector C is a simple path whose set of edges is C. The states of a sector correspond
to its directions, but a number of definitions are simpler if we let the state of a sector be a path
instead of a pair of endpoints of the sector.

Let Sector be the set of sectors.

A state of the sector model is a triple

(Snet ’ St.ra'ms Ssecbor)

such that (Spet, Strain) is state of the basic model and Ssector is a function on sectors such that for
every sector C, Ssector(C) is a state of C.

4.4 Safe States with Sectors
Definition 4.1 Two locally simple paths P and Q are compatible if either

4.1.1 they share no vertices or

4.1.2 P and Q are both (directed) subpaths of some locally simple (directed) path R.
See Figure 4.

Definition 4.2 The set Ssector Of safe states of the sector model consists of all states satisfying the
following conditions.

4.2.1 For each train 7, safe_area(r) is a path in Spe,.
4-2.2 For each train T and sector C, safe_area(r) is compatible with Ssector(C)-

4.2.3 Whenever T and 7' are distinct trains such that safe_area(r) and safe_area(r’) have a common
edge e, the two safe areas orient e differently.

Condition 4.2.2 will guarantee that trains traveling in opposite directions will not have overlapping
safe area. The sector model does not, however, contain any mechanism forcing safe area of trains
traveling in the same direction to be disjoint, so we just have to make it part of the definition of a
safe state (condition 4.2.3).

The sector model will refine the basic model via the mapping

P (Sneu Straim Ssector) = (Snety Strain)-
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Figure 4: Compatible and incompatible paths.

Lemma 4.3 The function p maps Ssector int0 Spasic-

Proof. We need only show that safe areas of distinct trains do not share any edges. Suppose
the contrary, that 7 and 7’ are distinct trains such that e is an edge of both safe_area(r) and
safe_area(7’). By 4.2.3, the safe areas of 7 and 7’ give e different orientations. If v is a vertex
incident to e, then either safe_area(r) or safe_area(r') must be incompatible with the state of the
sector of v.
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4.5 State Transitions

FOI' S, SI E Ssector, S }-sector SI if the fOllOWing COIlditiOIlS hOld.

. Snet '—net Srllet-
e For each train 7, the following conditions hold.

- Strain("') Ftrain Sérain(T)a and
— either safe_area() is a path in S}, and shares no edges with safe areas of other trains,
or else safe_area’(t) = safe_area(r).

o For any sector C, Ssector(C) = Sgeceor(C) unless for each train 7, if safe_area(r) or safe_area’(7)
shares a vertex with C then position'(7) is the reversal of position().

This definition makes the mapping p a refinement.

5 Classical Block Control

In this section we model the classical block control system with its associated signals. Our main
references for the block system are [10, 1, 2].

In a block control system, the railnet is divided into pieces called blocks. Two trains are never
permitted to occupy the same block, and the speed and weight of trains are restricted so that any
train can stop in the length of a block. A system of signals warns a train when it is approaching
another, early enough that the train has a block in which to stop. In this section we use the term
occupy in a technical sense defined in Subsection 5.5.

As we mentioned in the Introduction, we are primarily concerned with the fundamental safety
property that trains do not occupy the same block, hence do not collide. Hence in our main
discussion we do consider the possibility that a train may pass a red signal and be brought to
a stop by having its emergency brakes tripped. In Section 5.11, we show how our proof can be
modified to show that under normal operation, i.e., obeying yellow signals, emergency braking will
never be triggered.

Many variations of block control exist. The block control system presented here has simple signals
with three aspects (green, yellow, red) and controls trains so that no two trains ever occupy the
same block and, except in emergency situations, trains are always separated by an empty block.

5.1 Blocks

In our model, a block is a section of track, not containing any switches, exit from which is controlled
by signal, or, if the block is bidirectional, signals. Movement through switches is controlled by
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signals associated with adjacent blocks. If one wants to consider adjoining switches with movement
from one to another controlled by a signal, then imagine a block of length zero inserted between
them. (In such a case, a train entering a switch adjacent to the zero-length block must be moving
slowly enough that it stop in the length of the switch edge.)

Since we are considering only pure block control, we will simply let blocks be edges of simple
track units. Other kinds of control, the simplest being block control with some permissive signals
(through which one may proceed slowly enough to stop on sight) can be modeled by letting blocks
be collections of smaller edges, as we have modeled sectors. In our model, a red signal always
indicates absolute stop, never permissive stop (proceed at reduced speed, prepared to stop on
sighting a train ahead), because we do not model the possibility of more than one train occupying
a block.

Since blocks are edges we apply to them the usual terminology about entry and exit nodes.

5.2 Signals

At each exit node b of a block B there is a signal sg ;. The signal sg; is considered to be physically
located at b, facing toward traffic in B moving in the direction from ¢ — b, where I(B) = {a, b},
governing when traffic is permitted to exit through node 5. Figure 5 shows where signals must be
placed in a variety of circumstances.

According to this rule governing signal placement, there must be a signal sg; located at b even if b
is a terminal node. In practise, there would probably not be a signal there, but the control system
must still behave as if there were. This imaginary signal would always be red and closed according
to the rules we give below.

The state of a signal is a pair consisting of an aspect, the color of light it is displaying.

Aspect = {green, yellow, red}
Zsignal = Aspect x {open, closed}

We will not explicitly consider signals that are dark (not functioning), since dark signals are treated
as red. Our model assumes that standard signal fail-safe mechanisms, as described in [10], are used
so that a malfunctioning signal can only be dark and can never display a false aspect.

The indication of a signal aspect is its meaning to a train that sees it. Indications correspond to
aspects as follows:

e green—proceed (run in safety);
o yellow—approach, prepared to stop at the next signal;

e red—stop before passing the signal.

Indications define the intended normal behavior of the system, however, but such behavior cannot
always be guaranteed. For example, one cannot guarantee that a train will stop before a red signal
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Figure 5: Signal placement.

unless it first passes a yellow signal warning its engineer of the red signal ahead. Now, the only way
a train can approach a red signal without first passing a yellow signal is if it passes a signal just
as it would have turned yellow. Certainly such coincidences will be rare, but when they occur, the
train’s engineer will not know to stop until the train approaches the red signal, by which time it
may not be able to stop. Even if the yellow signal is seen, there is nothing actually forcing the train
to stop. If a train does pass a red signal, however, trip stops or some other fail-safe mechanism
will engage the train’s emergency brakes, making sure that it will stop before passing the next red
signal. This is why the signaling protocol we present normally keeps a vacant block between trains.

Being closed is not an observable property of a signal, but rather a concept describing a signal that
a train will not pass, even in an emergency situation. A closed signal is always red. If a signal is
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closed, no train can approach it without first passing another red signal and being halted by trip
stops triggering its emergency brakes.

In this model, yellow and green signals mean the same from the point of view of safety in the
strict sense and are treated the same. The difference between them is, however, important for
efficient railway operation, since it is inefficient for trains to have to emergency brake frequently.
In section 5.11, we discuss ways to modify the block model so that it models normal operation in
non-emergency situations, rather than safe operation even in emergencies.

5.8 State of a Train

As in the basic model and the sector model, the state of a train consists of its position and safe
area.

5.4 The Block Preceding or Following a Signal or Another Block

The protocol that determines signal aspects in the block control system is defined in terms of how
many blocks past the signal are accessible and unoccupied. In this section we present the graph
theoretic definitions required to define which blocks are relevant to a given signal.

Assume that a netstate Sp.. is given.

Consider an edge e of the supernet with incident nodes a and b. In Sy, the directed component
of e, in direction a — b, is a maximal path ...,d_;,dp,d;,. .. such that the following conditions
hold.

e do = (e, (a,b)).

e For each n > 0, if d, = (€n, (vn, Vn41)), and there exists €41 € Spet \ {€n} for which v, 4 is
an entry node, then dny1 = (€nt1,(¥n+1,Vn+2)), where v,42 is the other vertex incident to
en+1- If dn does not exist or there is no such e,41, then d,., does not exist.

e For n < 0, define d,_; from d, in dual fashion.

If it exists, e,41 is unambiguously defined, because in any netstate there are at most two edges to
which any vertex is incident.

The edges of the component of an edge e in the direction @ — b are the edges of the directed
component (in the usual sense) of (e,(a,b)) in the directed graph induced by (N, Spet) and the
direction function D. Because each vertex of (N, Shet) has degree at most two, the component
always forms a path. We simply number the edges of this path so that the zero-th edge is (e, (a,d)).

The nth block following the directed block do = (e, (a,b)) is the nth edge e, m > 0, searching
from e; up, that is a block. If there are not n such blocks, then the nth block following (e, (a, b))
is said not to exist. We define the nth block preceding (e,(a, b)) dually. The nth signal following
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Figure 6: The block and signal following a given block or signal.

(preceding) (e,(a,d)) is Sen,ums; Where en is the nth block following (preceding) (e, (a,b)). The
nth block (signal) following (preceding) a signal sp 4 is the nth block (signal) following (preceding)
(B,(a,b)), where a is the other vertex incident to B. We call ...,d_1,do = (B, (a,b)),ds,... the
component of sp .

The set of edges governed by sp; in a netstate Spe, consists of the edges €m41,€my2,...,60 = B
where e, is the first block preceding B in Spe¢, or, if there is no block preceding B, m is the first
negative index for which d,,, does not exist. In other words, 3pp governs B and any switch edges
intervening between B and the block preceding B. In the block model, since non-switch edges are
all blocks and switches are only one edge wide and do not adjoin, m is always either —1 or —2.

The various possibilities for block following are shown in Figure 6.

5.5 States of the Block Control Model

A state in the block control model consists of components giving the netstate and states of signals,
trains and sectors. The safety mechanisms of the block control system impose some physical
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restrictions on how the components of a state must be related. We describe those restrictions in
this section.

An edge e is associated with a block B if e = B or e is an edge of a switch and is adjacent to B.

A train T occupies an edges e (in a given state) in either of the following circumstances:

e ¢ belongs to position(7); or

e eis a block and an edge associated with e belongs to position(7).

Definition 5.1 The set Ty of all states of the block model consists of all quadruples
§= (Snet.a Ssignaly Stra.im Ssector) € Znet X Esigna.l X Btrain X Lsector

such that for each signal s, the following conditions hold.

Here, we write
Sirain(T) = (position(7), safe_area(r)).

Similarly, for a signals s we write
Ssignal(s) = (aspect(s), b),
where b € {open, closed}.
5.1.1 If the second signal following s in Spet does not ezist or the first or second block following s
is occupied by a train, then aspect(s) = red.

5.1.2 If the first signal s’ following s in Spe, exzists and aspect(s’) = red, then aspect(s) €
{yellow, red}.

5.1.3 1If a signal s is not closed, then the the block B following s ezists, is not occupied, and the
state of the component of B is compatible with the component of s.

5.1.4 For each train T, safe_area(r) consists of one of the following.

(i) All edges in position(t), plus any additional blocks occupied by 7.

(11) The foregoing, plus all edges as far as the signal following the signal governing v (i.e.
one additional block plus any intervening edges) if both signals exist.

The safe area of T is oriented compatibly with position(T).
5.1.5 If s is closed, then its aspect is red and so is the aspect of the signal preceding s, if it exists.
We allow signals that are not obliged by either of these rules to be red anyway in order to accom-

modate malfunctioning (dark) signals, treated as red, and to permit signals to be set to red by
other traffic control mechanisms.
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5.6 Safe States for Block Control

In this section, we will define what it is for a block control state to be safe.

As mentioned in Section 2, deciding which properties to put into the definition of a state, which to
put into the definition of a safe state, and how to define state transitions is somewhat arbitrary. The
rule we have followed is that if our model does not provide a mechanism showing how a property
is maintained, then that property should be included in the definition of a state. For example, the
component of an open signal must be compatible with the state (direction) of the sector of the
block following it. In practise, this property would be maintained by a protocol for setting sector
directions and for giving signals permission to open. Such a protocol is not represented in our
model, so we simply assume that all states satisfy this compatibility property.

Definition 5.2 The set Syl 0f safe states of the control system consists of all states
S= (Snet.v Ssignal, St.rain7 Ssector) € Z:bloclc

such that the following conditions hold.

5.2.1 For each train 7, position(T) is a subpath of the netstate Sney and is compatible with the
state of each sector C.

5.2.2 No block is occupied by more than one train.

9.2.3 For each train 7, if the signal s governing T is closed, then safe_area(t) consists only of all
edges occupied by 7.

The following condition shows that condition 5.2.3 makes sense.
Lemma 5.3 In any state satisfying condition 5.2.1, every train is governed by a signal.

Proof. (See Figure 7.) Consider the head node v of a train 7. Either the head edge e of the train
is a block, in which case there is a signal s, or else the e and v belong to a switch, and the other
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Figure 8: Safe areas of trains in various situations.

edge to which v is incident is a block B. Since the state is safe, the sector C of v, which is also the
sector of B, is oriented compatibly with the position of 7. That is, v must be an entry node of B.
If v’ is the corresponding exit node, the signal sg , exists and governs 7.
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5.7 Safe Areas and the Refinement Mapping

Theorem 5.4 If § is a safe state of the block model, then, for each train T, safe_area(r) is

5.4.1 a subpath of the netstate,
5.4.2 compatible with all sector states,

5.4.3 does not contain any edge occupied another train.
Proof. Let S be a safe state and let 7 be a train.

Proof of 5.4.1.

By 5.2.1, all edges in the position of 7 belong to the netstate. Any additional blocks occupied by
T must belong to the netstate, because blocks always do. By Lemma 5.3, the signal s governing T
exists. The signal s’ following s can exist only if all edges on the path from s forward to s’ exist
and belong to the netstate.

Figure 9 illustrates why the edges of safe_area(r) actually form a path.

e Necessarily, position(r) is oriented compatibly with the component of the signal s governing
T.

¢ Any additional blocks occupied by 7 are adjacent to edges in position(r). The flow condition
implies that any such blocks must be orientable compatibly with position(r).

® There is no gap between the head edge of 7 and the signal S governing 7 because if the head
edge of 7 is not actually the block B governed by s, then the head edge of r is adjacent to
B, and hence B is occupied by 7.

e If the signal s’ following s exists, the path from s forward to ' is a subpath of the component
of s and is contiguous with the rest of the safe area of 7.

Hence the whole safe area of r forms a subpath of the netstate.

Proof of 5.4.2.

By 5.2.1, position(T) is compatible with all sector states. Any additional block B occupied by T
shares a vertex with position(r); hence compatibility of position(r) with the state of sector of B
implies that safe_area(r) orients B compatibly with the state of the sector of B. If the path from
the signal s governing 7 forward to the signal following s belong to safe_area(r), then 5.2.3 and
5.1.3 imply that the component of s, and hence its subpath safe_area(t), is compatible with the
sector of the block governed by s’. The safe area of 7 does not share a vertex with a block of any
sectors other than these, so it is compatible with the states of all sectors.
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By, By, B3 are blocks, eq, €3, e3 are other edges.
Position of T consists of €1, By, €.

B, and Bj are additional occupied blocks.
Signal s governs 7.

Path from s to s’ consists of e, By.

Figure 9: Why the safe area of a train is a path.

Proof of 5.4.3.

By 5.2.2 no other train occupies any edge of the position of 7 or any additional block occupied by
7. By 5.2.3 and 5.1.3, if the path from the signal s governing 7 forward to the signal following s
belong to safe_area(r), then they are not occupied by any train. O

Theorem 5.4 and Lemma 4.3 now give us the following Corollary.

Corollary 5.5 The map

P (Snety Ssignalv Straina Ssector) L (Sneta Straim Ssector)
maps safe states of block model to safe states of the sector model.

Hence, in any safe state S, distinct trains have disjoint safe areas, and the map

pl : (Snetn Ssigna.b Straim Ssector) = (Sneta Stra.in)

maps block-safe states to basic-safe states.

5.8 State Transitions in the Block Control System

Definition 5.6 A state transition S Fplocx S is permitted in the block control model if and only if
the following conditions hold.

5.6.1 Snet Fnet Shet-
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5.6.2 For any switch T, Shee N ET = Sl N ET (the switch’s state does not change) unless every
signal at a node of T is closed in S and in S’ and no edge of T is occupied by a train in S.

5.6.3 For each train T, one of the following two conditions holds.

e position'(T) reverses position(7) and safe_area’(t) consists of all edges occupied by T in
S’. In this case, any sectors sharing a node with position(r) must also reverse.

e position’(T) advances position(t), moving the head forward by at most one edge, and
only within its safe area.

If the signal s governing T in S does not govern 7 in S’ (T has passed s), then
safe_area/(7) is as follows.

(i) If aspect(s) = red then safe_area’(t) consists of all edges occupied by T in §'.

(ii) If aspect(s) # red then safe_area’(T) consists of all edges occupied by T in S’ plus
all edges forward to the signal s” following the signal s’ governing T in S'.

If the same signal s governs T in both S and S’, then safe_area’(r) is as follows.

(ti1) safe_area’(t) includes all edges occupied by T in §'.

(iv) If safe_area(t) includes edges as far the signal following the signal s governing T
in S and S’, then so does safe_area’(t).

(v) If aspect(s) = red and safe_area(r) includes only edges occupied by T in S, then
safe_area’(t) contains only edges occupied by T in S'.

(vi) Otherwise, safe_area/(t) may (but need not) include edges forward to the signal
following s, but no others.

5.6.4 A signal s open in state S is open in state S’ unless one of the following conditions holds.

o In S, the edges governed by s and the signal preceding it are unoccupied.

o In §', the block following s is occupied (train passing a signal).
5.6.5 A sector C may change state only if

o every signal s such that C ts the sector following s, s is closed in S and in S’ and

e every train whose S-position contains a node of C reverses in 5’.
(Of course, the restrictions on states given in 5.1 must also hold in S'.)
Let us explain the state transition rule concerning safe areas.

e If a train passes a non-red signal, there is nothing forcing it to stop before the next signal, so
we also add the block following that signal to its safe area.
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Figure 10: How the safe area changes when a train advances.

e If the signal governing a train is not red, then as soon as the train comes in sight of that
signal, the next block should be added to the train’s safe area. The idea of a train sighting the
signal governing is represented only by this state transition; it is not represented explicitly.

o If the safe area of a train includes the block following the signal s governing the train, and the
signal s subsequently turns red or goes dark, the train may be moving too fast to stop before
reaching the signal. Hence the block following s remains in the safe area. This requirement
conforms to the basic model, which requires that a state change advance the safe area of each
train that does not reverse.

It is trivial that if § is safe and § Fplock S’ then the S’-position of each train is contained in the
train’s S-safe area. It is also easy to prove another one of the requirements for p’ to be a refinement

mapping.

Lemma 5.7 If S is a safe state of the block model, S Fyoac S, and 7 is a train such that
position’(T) advances position(r), then safe_area’(7) advances safe_area(r).
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Proof. Trivial. O

5.9 Two Examples

Figures 11 and 12 illustrate the reasons for two features of the block model.

Figure 11 shows why we require two vacant blocks preceding a signal before we allow it to close
and the switch it guards to open.

Figure 12 shows why it is necessary to include the sector model in the block model: otherwise two
or even three blocks between trains is not enough to prevent head-on collisions.

5.10 The Safety Theorem

If S Fplock S’ is a state transition and s governs 7 in § but not in §’ , and position’(r) advances
position(7), then we say that 7 advances past s in going from § to §’.

Lemma 5.8 If S is a safe state and S Fpjock S’ and a signal s is closed in S, then no train advances
past s from S to S'.
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Figure 12: Why all trains on a sector must be moving in the same direction.

Proof. If a closed signal s governs a train 7, then the safe area of the train consists only of the
edges it occupies, which all precede s.

Theorem 5.9 If S is a safe state of the block model and S Fyiock S’ then S’ is a safe state of the
block model.

Proof. We must prove that S’ satisfies each of the defining conditions of safety as given in
Definition 5.2.

Proof of 5.2.1.

Consider a train 7. Arguing as in Lemma 5.7, no switch crossed by safe_area(r) can change state, so
safe_area(T) is contained in SJ,;. Since position'(T) is contained in safe.area(7), it is also contained
in S}

Now consider compatibility. If the state change reverses 7, then all sectors containing vertices of
position(7) must also reverse, maintaining compatibility. Suppose, then, that position’(r) change
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advances position(r). Let C be a sector with which position’(7) shares a node and let s be the
signal governing 7 in 5. One of the following must hold.

o C shares a node with position(7).

e The signal s is open and C contains the block following s.

In the first case, C does not reverse because it shares a node with a train that does not reverse.
In the second case, C may not reverse because s is open. In either case, the S’-state of C is the
same as the S-state of C, which is compatible with position(7) and hence with the latter’s subpath
position’(7).

Proof of 5.2.2.

In §’, distinct trains do not occupy the same block, because all blocks they occupy are contained
in the S-safe areas of the trains, which also share no edges.

Proof of 5.2.3.

We need only consider the three circumstances in which safe_area’(r) can extend beyond the signal
s’ governing T in S'.

» The signal s’ governs 7 in § and safe_area(r) extends past s’. Since § is safe, s’ is open in §
and the block B” following s’, since it belongs to safe_area(r), does not belong to the S-safe
area of any other train. Hence B” is not occupied in S or in §’. Since s’ governs 7 and is
open in S5 and the block following s’ exists and is unoccupied in §’, s’ must remain open in

S’

o The signal s’ governs 7 in S but safe_area(r) does not extend past s’. Then s’ was not red in
S, hence was open in §. Hence the sector of block B” following s’ was oriented compatibly
with the component of s’. Hence it can belong to the S-safe area of some train ahead of 7
only if occupied in S, which it is not, since s’ is not red. Hence B" is not occupied in §’.
Hence, as in the preceding case, s’ is open in 5’.

e T advances past a signal s, which is not red. Then s’, which is the signal following s in both
S and $’, is open in S, and arguing as before, remains open in $’.

This completes the proof. O

Theorem 5.9 and Lemma 4.3 now yield our final result.

Corollary 5.10 The mapping p is a refinement of the generic model into the block model.

36



5.11 Adapting the Block Model to Prove Properties Related to Safety

We have developed and proved safety of a particular form of the block model designed to capture
the notion of safety in its strongest form: trains will never collide or cross unsafe track, not even
in emergency situations, no matter how negligent their engineers may be, as long as signaling and
emergency brake triggering mechanisms work as required and certain rules for setting switches are
followed.

Our block model is, however, quite flexible and can be adapted to show other desirable properties
of block control. For example, it is undesirable for emergency braking, which will be triggered
whenever a train passes a red signal, to occur on a regular basis. Hence we would like to show that
under normal operation, that is, assuming that any train that passes a yellow signal will come to a
stop before passing the next signal, then in fact no train will ever pass a red signal. The nontrivial
requirement is to show that the signal ahead of a train cannot be red unless the last signal passed
by the train was yellow.

To model this idea, we change the safety and state change conditions that involve safe areas to the
following.

e In a safe state, if the signal s governing a train 7 is red, then the safe area of 7 consists only
of all edges occupied by 7.

¢ Suppose a train T advances past a signal s. If the aspect of s before being passed was green,
then in the new state S’ the safe area of 7 extends to the signal following the signal governing
7 in §’. Otherwise, in S’ the safe area of T consists only of the edges occupied by 7.

e If the signal s governing a train 7 is green or yellow, then the safe area of 7 may be extended
to the signal following s.

e A signal may not turn red if it or the signal preceding it governs a train.

These conditions can be obtained from the conditions of our regular definition by making the

replacement
closed — red

red — yellow
yellow — green

Note that the last of our new rules imply a change in conditions in which a switch may be opened:
a signal may close (and the switch it guards subsequently open) only if the three blocks preceding
it are unoccupied.

The strong condition about when a signal can turn red is needed to ensure that a train can approach
a red signal only if it has previously passed a yellow signal. If we change the state transition rules
to forbid that in the same transition a train 7 pass a signal s and the signal s’ following s turn
red (that is, 7 passes s just as it would have turned yellow), then we can weaken the condition on
signals turning red to the following.
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o A signal may not turn red if it governs a train.

What does safety of that model prove? That if engineers observe yellow lights, then emergency
braking will not occur unless a train passes a signal just as it would have turned yellow.

6 Conclusion

We have presented a basic model of railway safety based on the concept of the safe area of a
train, a region implicitly reserved for it by the control system and refinements of this model that
respectively include control of direction of traffic on track sectors that do not contain switches
and classical railway control based on blocks and signals. We have demonstrated the flexibility of
this model by showing how it can be modified in order to show several safety-related properties of
block control. Our basic model can also be refined so as to support safety proofs for other control
systems, but doing so is beyond the scope of this paper.

The ease with which we were able to modify our block model in order to prove different safety
properties suggest that it may be possible to prove a parameterized form of the safety theorem
from which particular safety proofs could be obtained by plugging in appropriate parameters. Such
a proof might also prove safety of systems with shorter blocks (trains can stop within n blocks
instead of within one block) and more complex signaling that indicates occupancy of several blocks
ahead.

We mentioned that a large part of our block control model has been formalized and lemmas proved
about it in the PVS theorem prover. Finishing the formalization would be useful in order to
facilitate experimentation with modified control systems and their safety proofs. Other ways to
continue this work would include liveness proofs for the block model, that is, giving reasonable
conditions under which state change is possible and, more generally, movement of trains toward
their destination is possible; and modeling a communication protocol for sector direction control
and for train control involving communication between trains and controllers.

We hope that our proof will help identify the essential concepts in railway safety and facilitate the
discovery and proof of safety of new railway control protocols.
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